文章编号:0253-2239(2009)02-0303-05

Shack-Hartmann 传感器用于湍流大气 横向风速的测量

苑克娥 朱文越 黄印博 饶瑞中

(中国科学院安徽光学精密机械研究所 大气光学中心,合肥 230031)

摘要 分析了利用 Shack-Hartmann 波前传感器子孔径对之间光强信号的时间延迟交叉相关函数,进行光传播路 径上横向平均风速测量的基本原理,给出了横向平均风速的计算公式,并进行了水平 1 km 湍流大气实验测量。 实验结果如下:不同子孔径对同时测量的横向风速相关系数达 0.988;将多对子孔径对测量的结果取平均,与接 收端附近布置的风速计测量的横向风进行了对比,发现两系统的测量结果在随时间的变化趋势上具有较好的一致 性,两次实验拟合的相关系数分别为 0.848 和 0.820,标准偏差分别为 0.372 和 0.376。以上结果表明,将 Shack-Hartmann 波前传感器用于横向平均风速的测量是可行的,拓展了该传感器的使用功能。

关键词 湍流大气; Shack-Hartmann 波前传感器; 闪烁相关; 路径横向平均风速

中图分类号 P427.1 文献标识码 A doi: 10.3788/AOS20092902.0303

Measurement of Path-Averaged Transverse Wind Speed with a Shack-Hartmann Wave-Front Sensor

Yuan Ke'e Zhu Wenyue Huang Yinbo Rao Ruizhong

(Laboratory for Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, The Chinese Academy of Sciences, Hefei, Anhui 230031, China)

Abstract By measuring time lagged cross correlation function with a pair of sub-apertures of Shack-Hartmann wavefront sensor, the path-averaged transverse wind speed and wind direction can be found directly from the slope of this function with no time delay. Experiential formula to calculate the path-averaged wind speed is deduced. And the experiment on it in 1000 m horizontal propagating path was carried out for the first time by use of a Shack – Hartmann wave-front sensor. Some results were found. Firstly, the correlation coefficients of wind speed reach 0.988 from different pairs of sub-apertures; secondly, the results from different pairs of sub-apertures were averaged, and the variation trend was in accord with gained from an anemometer placed in the 15-m tower. The correlation coefficients of two typical experiments are 0.848 and 0.820 respectively. All the experimental results indicate that measuring path-averaged transverse wind speed by Shack-Hartmann wave-front sensor is feasible, which extends the function of this sensor.

Key words atmospheric turbulence; Shack-Hartmann wave-front sensor; scintillation correlation; path-averaged transverse wind speed.

1 引 言

湍流大气中横向风速的随机起伏是制约光波大 气传输的重要因素之一。对一般的激光传输,横向 风速决定着光波起伏频谱的特征;对高能激光大气 传输,传输光路上的横向风速是决定热晕效应强弱 的关键因素^[1~3]。因此准确的测量光传播路径上的

基金项目:中国科学院创新基金(CXJJ-249)资助课题。

作者简介:苑克娥(1979-),女,博士,主要从事激光大气传输的研究。E-mail: yuanke0301@163.com

导师简介: 饶瑞中(1963-),男,研究员,博士生导师,主要从事激光大气传输前沿物理问题、光辐射和图像的大气传输、 大气湍流的光学特性及光学湍流测量方法研究等。E-mail: rao@aiofm.ac.cn

收稿日期: 2008-06-19; 收到修改稿日期: 2008-08-12

通常对横向平均风速的测量有多种方法,最为 普遍的是将多个超声风速计布置在传输路径的不同 位置,将各个风速计的测量结果求取平均从而得到 横向平均风速,然而该方法无法实现特殊路径(例 如海、湖面上空或者飞机场跑道上空等)的测量;微 波雷达、多普勒雷达通过测量到的空间三维风,分 解到光路的横向方向从而得到横向风,该技术的设 备造价及维护成本都比较高;为了克服这些不足, 国外已有学者提出利用时空间闪烁相关法来反演光 波路径上横向风速的方法^[4~6],对该方法报道的最 多的是如何在理论上由时间延迟相关系数得到横向 风速,而对于实际大气的实验测量却少见报道。本 文 在 此 理 论 方 法 的 基 础 上,实 现 了 Shack-Hartmann 波前传感器(SHWS)的横向风速的实验 测量。

SHWS 具有较高的时间与空间分辨率,能实时 地动态地对光波相位起伏和闪烁效应同时进行测 量^[7,8]。将每一个子孔径看作一定接收孔径的光强 探测器,利用 SHWS 任意两个子孔径即可进行闪 烁相关法横向风速的测量,换言之,通过将相同方 向的间距相等的多对子孔径测量结果取平均,使得 横向风速的测量结果更加准确可靠。同时,SHWS 可以提供与光路垂直平面内任意角度方向的路径平 均风速,从而为横向风速的各向异性特征的后续分 析研究提供了宝贵的数据。该技术在苑克娥等提出 的 SHWS 用于闪烁和相位起伏效应的同时测量的 基础上^[7],进一步拓展了 SHWS 的使用功能。

2 理 论

报

学

根据 Taylor 湍流冻结假说理论, 空间某点某 个物理量的瞬时变化是由通过该点的大气运动(由 横向风速表征)引起的, 而大气内部的运动可以忽 略不计。根据此假说和湍流大气光传播理论, 在弱 起伏条件下, 波数为 k 的球面波经过大气湍流传 播, 在距光源为 L, 间距为 ρ 的两探测器上产生的 光强起伏时空间交叉相关函数的表达式为^[1]

$$B_{I}(\rho,\tau) = 4(2\pi k)^{2} \int_{0}^{L} \mathrm{d}z \int_{0}^{\infty} J_{0}(\kappa | \rho \gamma - v(z)\tau |)$$

$$\sin^{2} \left(\frac{\kappa^{2} \gamma(L-z)}{2k}\right) \Phi_{n}(\kappa,z) \kappa F(\kappa,D) \mathrm{d}\kappa \quad (1)$$

式中 τ 为两探测器信号的时间延迟, $\gamma = z/L$ 是球 面波的传播因子, κ 是湍流空间波数。 $\Phi_n(\kappa, z)$ 表示 折射率起伏的三维功率谱密度,这里采用 Kolmogorov谱的形式,即^[3]

$$\Phi_n(\kappa, z) = 0.033 C_n^2(z) \kappa^{-11/3}, \qquad (2)$$

式中 C_n²(z) 为离发射端距离为 z 处的湍流大气的折 射率结构常数,即湍流强度的大小,通常对于水平 大气传输可以认为该参量在整个路径上为常数。 F(κ,D) 表示孔径滤波函数,可以在一定程度上平 滑小尺度湍涡引起的闪烁从而抑制闪烁饱和效 应^[9~11]。对接收口径为 D 的圆形孔径

$$F(\boldsymbol{\kappa}, D) = \left[\frac{2J_1(\boldsymbol{\kappa} D\boldsymbol{\gamma}/2)}{\boldsymbol{\kappa} D\boldsymbol{\gamma}/2}\right]^2.$$
(3)

为消除湍流折射率结构常数的不确定性,引入归一 化时间延迟交叉相关函数,将其定义为光强起伏的 时空间交叉相关函数与闪烁指数的比值,即

$$b_{I}(\rho,\tau) = \frac{B_{I}(\rho,\tau)}{B_{I}(0,0)} = \frac{B_{I}(\rho,\tau)}{\beta_{I}^{2}(D)}, \qquad (4)$$

将式(1)~(3)代人(4)式,得到
$$b_{I}(\rho,\tau) = \frac{\int_{0}^{L} dz \int_{0}^{\infty} \kappa^{-8/3} J_{0}(\kappa | \rho \gamma - v(z)\tau|) \sin^{2} \left(\frac{\kappa^{2} \gamma (L-z)}{2k}\right) \left[\frac{2J_{1}(\gamma \kappa D/2)}{\gamma \kappa D/2}\right]^{2} d\kappa}{\int_{0}^{L} dz \int_{0}^{\infty} \kappa^{-8/3} \sin^{2} \left(\frac{\kappa^{2} \gamma (L-z)}{2k}\right) \left[\frac{2J_{1}(\gamma \kappa D/2)}{\gamma \kappa D/2}\right]^{2} d\kappa}.$$
(5)

SHWS的微透镜阵列将入射到传感器内的畸 变波前采样分割为若干子波,分别会聚在其焦平面 上形成一个光斑阵列,用面阵 CCD 进行感光探测。 根据电荷耦合器件(CCD)在动态测量范围内的输出 信号与曝光量成线性的特点,统计每一个子光斑内 所有像素的灰度值之和,就可以得到入射到每个子 孔径内的相对光强值,这样,每一个入射子波、子 孔径透镜以及相应的 CCD 面元就构成了一个光强 探测系统。统计任意两个子孔径的光强信号随时间 的起伏即可得到归一化时间延迟交叉相关系数,这 样可以得到任意空间间隔和时间延迟情况下的交叉 相关系数。图1描绘了典型的归一化时空间交叉相 关函数 $b_l(\rho,\tau)$ 随时间延迟 τ 和空间距离 ρ 的变化情况。

固定两子孔径之间的间距 ρ ,将(5)式对时间 延迟求偏导并令 $\tau = 0$,可得

图 1 典型的归一化时空间延迟交叉相关函数 Fig. 1 Typical normalized temporal and spatial delay cross correlation function

 $f(\rho) =$

$$\frac{\int_{0}^{L} W(z) v(z) dz}{\int_{0}^{L} dz \int_{0}^{\infty} \kappa^{-8/3} \sin^{2} \left(\frac{\kappa^{2} \gamma(L-z)}{2k}\right) \left[\frac{2 J_{1}(\gamma \kappa D/2)}{\gamma \kappa D/2}\right]^{2} d\kappa},$$
(6)

其中 $W(z) = \int_{0}^{\infty} \kappa^{-5/3} J_1(\kappa \rho \gamma) \sin^2 \left[\frac{\kappa^2 \gamma (L-z)}{2k} \right] \cdot \left[\frac{2J_1(\gamma \kappa D/2)}{\gamma \kappa D/2} \right]^2 d\kappa$ 表示横向风速的路径权重函数, 图 2 为 $r = \rho / \sqrt{\lambda L}$ 取不同值时 W(z) 沿归一化路径 位置的分布形式。从图中可以看出,选择 $\rho / \sqrt{\lambda L} = 0.33$ 时,W(z) 以路径中部为中心对称分布。这样对 于同样的风速分布,测量结果不会因为光源与探测 器的放置顺序不同而不同,与点接收情况相比,探 测器口径 D > 0时远场的权重负值分量远远减小。

根据(6)式,可以得到光传输路径上横向平均 风速为

$$\bar{v} = \frac{f(\rho)}{c},\tag{7}$$

风速的方向平行于所选子孔径对之间的连线。这就 是利用 SHWS 进行横向风速测量的原理,实验中 将方向相同(平行于水平方向)的多对子孔径对的测 量结果取平均,然后计算横向风速。

3 实验装置

利用现有的口径为 120 mm 的 SHWS 进行了 水平间距1 km 的横向平均风速测量实验,装置示 意图如图 3 所示。整套装置包括三部分:激光光 源、SHWS 以及数据存储处理的计算机。光源为半 导体激光器,发出中心波长为 0.660 µm、发散角约 2 mrad发散光束,经过湍流大气和横向风速的扰动 后到达接收端,光束离下垫面的高度约10m。下 垫面在光源的近场部分为湖面,远场部分为陆地, 中间部分为埂坝。整个光路的方向为北偏西 0.209 rad即 α = 0.209 rad。采集卡的采样频率为 955 Hz,实验每隔 10 min 进行一次,每次采集 3000帧。传感器微透镜阵列数目为 18×18, 即每 个探测器单元的等效口径约为 6.667 mm, 这样 $r = \rho / \sqrt{\lambda L} \approx 0.26 N, N = 1, 2, ... 18, 结 合 前$ 面的分析,采用相邻子孔径对进行实验测量才能保 证横向风速的权重近似以路径中部为中心对称分 布。将所有的参数带入(8)式,利用高斯积分方 法^[12]得到 c=126.445。

Fig. 3 Schematic diagram of experimental setup 为了验证实验结果的准确性,将实验结果与布 置在接收端附近的 15 m 铁塔上的风速计同时测量 的结果进行了对比分析,风速计的型号为 05103 风 速风向传感器。将风速计两个水平分量在 SHWS 光路的横向方向投影,如图 4 所示,则风速计测量 得到的横向风速为

图 4 风速计水平风速向 SHWS 光路横向 方向的投影示意图

 $v_{anemometer} = v_1 \sin \alpha + v_2 \cos \alpha$ (8) 另外,由于所选风速计每 20s 采集一次,实验中将 风速计每 10 min 的数据进行了平均处理。

4 实验结果与分析

典型的两次实验选择的时间段一次为以东北、 西北风为主的2007年11月22日至11月23日,另 一次为西南、东南风为主的2008年5月14至5月 16日,两次实验都是在晴朗的天气状况下进行的。 选取了SHWS横向相邻的四对子孔径,将它们的 测量结果进行了对比分析(图5)。为避免光束边缘 效应带来的测量误差,选取的子孔径对基本处于 SHWS的中间部位。从图中可看出利用四对子孔 径信号测量的结果在变化趋势和风速量级上几乎完 全一致,两两之间的相关系数达0.988,由此验证 了SHWS用于横向平均风速测量的自治性。

图 5 SHWS 四对子孔径对测量结果的对比 Fig. 5 Comparison of wind speed for four pairs of sub-apertures of SHWS

图 6 为 SHWS 的测量结果与 15 m 塔上风速计 测量结果的对比,对 SHWS 的数据我们取上述四 对子孔径对的平均值。图中实线为 SHWS 测量的 1 km湍流路径上横向风速,虚线为 15 m 塔上风速 计测量的水平风在 SHWS 光路横向方向的分量。 从图 6(a)和(c)可以看出,两仪器测量的横向风速 在数值上有微小差异,但在变化趋势上基本一致, 而且二者测量的风向也基本一致。以 SHWS 测量 的横向风速为横坐标,以风速计测量的横向分量风 速为纵坐标进行了线性拟合分析,从图 6(b)和(d) 看出,两次实验的线性相关系数分别为 0.848 和 0.820,线性拟合的斜率分别为 0.921 和 1.076,由 此表明 SHWS 用于横向平均风速测量的可靠性。

对 SHWS 和风速计测量结果在数值上的差异

原因解释如下:首先,实验中 SHWS 测量的是 1 km水平路径上横向风速的路径平均值,整个光路 离下垫面的高度约为 10 m,而风速计测量的是接 收端附近离地高度为 15 m 处的风速,属于点测量 值;其次,实验所用风速计是利用其四片螺旋推进 器旋转产生电压信号,该电压信号的频率与风速成 正比,从而得到风速大小与方向。根据物理学知 识,当实际风速剪切较大,特别是由较大风速值变 化至趋近于零值风速时,会导致其测量结有较大误 差,如图 6(c)中5月14日 10:20-11:00及5月16 日 18:00-20:00 时间段内的结果。综上分析, SHWS 和风速计的测量结果存在微小差异是完全 合理的。

图 6 SHWS 测量的横向平均风速与 15 m 塔处的风速计测量结果对比 Fig. 6 Comparison of wind speed from SHWS and that of the anemometer on 15-m tower

5 结 论

提出了利用 SHWS 子孔径对之间光强信号的时间延迟相关函数,进行路径平均横向风速测量的方法,理论分析了当两孔径间距与 Fresnel 尺寸的比值为 0.33 时,风速的路径权重以路径中部为中心对称分布,结合现有的 SHWS 尺寸参数,利用相邻的子孔径对进行了水平 1 km 横向风速的实验测量。对四对子孔径对测量结果的对比表明了该测量方法的自治性;分别将两段时间内横向风速的结果与 15 m 塔上布置的风速计测量的风速进行了对比,结果表明两系统测量的风速在方向和数值上基本一致,这为 SHWS 用于横向风速的测量和进一步的研究分析提供了可靠保证。同时,该技术进一步拓展了传感器的使用功能,具有重要的工程意义。

致谢 感谢中国科学院安徽光学精密机械研究所吴 晓庆提供的风速数据。

参考文献

- 1 Rao Ruizhong. Light propagation in the atmospheric turbulence [M]. Hefei: Anhui Science & Technology Press, 2005 饶瑞中. 光在湍流大气中的传播[M]. 合肥:安徽科学技术出版 社, 2005
- 2 Lü Baida. Propagation and control of high-power lasers [M]. Beijing: National Defence Industry Press, 1999 吕百达. 强激光的传输与控制[M]. 北京:国防工业出版社, 1999
- 3 Tatarskii. Wave Propagation in a Turbulent Media [M]. Wen Jingsong, Song Zhengfang, Zeng Zongyong *et al.*. transl.,

Beijing: Science Press, 1978

塔塔尔斯基. 湍流大气中波的传播理论[M]. 温景嵩,宋正方,曾 宗泳 等 译,北京:科学出版社, 1978

- 4 B. H. Briggs, G. J. Phillips, D. H. Shinn. The analysis of observations on spaced receivers of the fading of radio signals[J]. *Proc. Phys. Soc. B*, 1950, **63**(106): 106~121
- 5 R. S. Lawrence, G. R. Ochs, S. F. Clifford. Use of scintillations to measure average wind across a light beam[J]. *Appl. Opt.*, 1972, 11(2): 239~243
- 6 Ting-i Wang, G. R. Ochs, R. S. Lawrence. Wind measurements by the temporal cross-correlation of the optical scintillations[J]. Appl. Opt., 1981, 20(23): 4073~4081
- 7 Yuan Ke'e, Zhu Wenyue, Rao Ruizhong. Measurements on scintillation and phase fluctuation of light propagation through atmospheric turbulence simultaneously by Shack-Hartmann wavefront sensor[J]. Acta Optica Sinica, 2008, **28**(9): 1659~1663 苑克娥,朱文越, 饶瑞中. Shack-Hartmann 波前传感器用于闪烁和相位起伏效应的同时测量[J]. 光学学报,2008, **28**(9): 1659~1663
- 8 B. Martin Levine, Elizabeth A. Martinsen, Allan Wirth *et al.*. Horizontal line-of-sight turbulence over near-ground paths and implications for adaptive optics corrections in laser communications[J]. *Appl. Opt.*, 1998, **37**(21): 4553~4560
- 9 J. H. Churnside. Aperture averaging of optical scintillations in the turbulent atmosphere[J]. Appl. Opt., 1991, 30(15): 1982~1994
- Ma Xiaoshan, Zhu Wenyue, Rao Ruizhong. Large aperture laser scintillometer for measuring the refractive index structure constant of atmospheric turbulence[J]. *Chinese J. Lasers*, 2008, **35**(6): 899~902
 马晓珊,朱文越,饶瑞中. 测量大气折射率结构常数的大口径激

与皖珈,朱又越,皖坜甲,测重天气折射举结构常数的天口径激 光闪烁仪[J]. 中国激光,2008,**35**(6):899~902

- 11 Rao Ruizhong, Gong Zhiben, Wang Shipeng et al.. Aperture averaging of saturated scintillation of laser propagation in the atmosphere[J]. Acta Optica Sinica, 2002, 22(1): 36~40 饶瑞中, 龚知本, 王世鹏等. 激光大气闪烁饱和的孔径平均效应 [J]. 光学学报, 2002, 22(1): 36~40
- 12 Ma Xiaoshan, Zhu Wenyue, Rao Ruizhong. Comparison of refractive index structure constants of atmospheric turbulence deduced from scintillation and beam wander effects [J]. *High Power Laser and Particle Beams*, 2007, **19**(4): 538~542 马晓珊,朱文越,饶瑞中.利用闪烁和漂移效应测量大气折射率结 构常数的对比分析[J]. 强激光与粒子束, 2007, **19**(4): 538~542